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a b s t r a c t

Pressure drop is the most important factor affecting the dust collection efficiency in venturi scrubbers.
The model described by Viswanathan et al. [S. Viswanathan, A.W. Gnyp, C.C. St. Pierre, Annular flow
pressure drop model for Pease–Anthony type venturi scrubbers, AIChE J. 31 (1985) 1947–1958] predicts
pressure drop according to an annular two-phase flow model, but there is a parameter lacking in order
to implement this model. In this work, some correlations are suggested for use in Viswanathan’s model.
The results are compared with experimental data extracted from two different venturi scrubbers with
different conditions. In these ranges of conditions, good agreement between the results of this modified
rtificial neural networks
enetic algorithm

model and experimental data shows the ability of the model to predict pressure drop. In the next step,
artificial neural network was used to predict pressure drop in venturi scrubbers and acceptable results
were obtained. For increasing the efficiency of neural networks, genetic algorithm was used to optimize
parameters of the neural network such as the number of neurons in the hidden layer, the momentum
rate and the learning rate. Finally, the model of neural network optimized by genetic algorithm was
selected as the best model due to its agreement with experimental data and greater flexibility compared
to mathematical models.
. Introduction

The control of air pollution is one of the most important concerns
or industrialized countries. Venturi scrubber is a popular gas clean-
ng device through its high efficiency for removing fine particles and
oluble gas pollutants from gas. Venturi scrubbers consist of con-
ergence, throat and divergence parts. Scrubbing liquid is injected
rom the beginning of the throat section, or entered as a film layer
rom the convergence. Liquid is atomized to very small droplets
acing to gas stream that have a high kinetic energy at the begin-
ing of the throat. These droplets remove pollutants from gas by

mpaction and interception mechanisms. Growing the gas veloc-
ty in the convergence section, friction and also energy transferred
o droplets from gas in order to increase their momentum, cause
ressure drop in venturi scrubbers. This pressure drop is very high
ompared to other air pollution controlling devices, so in spite of
any advantages that venturi scrubbers have, they need a very high
unning cost to secure the pressure. Therefore pressure drop is an
mportant designing factor in venturi scrubbers.

Many researches have been performed in order to predict this
actor. The model of Calvert [2] is a popular model to predict pres-

∗ Corresponding author. Tel.: +983412118298; fax: +983412118298.
E-mail address: amohebbi2002@yahoo.com (A. Mohebbi).

385-8947/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
oi:10.1016/j.cej.2008.12.011
© 2008 Elsevier B.V. All rights reserved.

sure drop in venturi scrubbers due to its simplicity. Calvert [2]
assumed that all the liquid is atomized and droplets are accelerated
to reach the velocity of gas at the end of the throat. In this model
wall friction and pressure recovery in the diffuser were neglected.
Yung et al. [3] improved the model of Calvert by the assumption
that droplets do not always reach the gas velocity at the end of the
throat. Leith et al. [4] extended the model of Yung et al. [3] in order
to include the pressure recovery due to the deceleration of droplets
in the diffuser. Boll [5] developed a mathematical model based on
momentum balance along the scrubber that include three mech-
anisms causing pressure drop namely the acceleration of the gas,
the acceleration of droplets and friction. In this model complete
atomization of the liquid was assumed.

Azzopardi and Govan [6] observed that there are some similar-
ities between hydrodynamics in venturi scrubbers and an annular
two-phase flow pattern and developed a model based on it. In this
model droplet exchange between gas core and liquid film was con-
sidered. The model of Azzopardi and Govan resulted well up to the
end of the throat, but it underestimated the pressure drop in the
diffuser, so Azzopardi et al. [7] took into account the effect of the

growth of the boundary layer in this part to reduce the pressure
recovery. The results of this model were acceptable but it needs
many equations and complicated algorithms. Viswanathan et al.
[1] followed the idea of Azzopardi and Govan to describe the flow
of gas and liquid in a venturi scrubber similar to annular two-phase

http://www.sciencedirect.com/science/journal/13858947
http://www.elsevier.com/locate/cej
mailto:amohebbi2002@yahoo.com
dx.doi.org/10.1016/j.cej.2008.12.011
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Nomenclature

A cross-sectional area (m2)
As lateral area (m2)
CD drag coefficient
D diameter (m)
DH hydraulic diameter (m)
f friction factor
G gas volumetric flow rate (m3/s)
H half of the width of the throat (m)
L liquid volumetric flow rate (m3/s)
ṁd mass flux of drops (kg/m2s)
P pressure (KPa)
Q volumetric flow rate (m3/s)
Re Reynolds number
V velocity (m/s)
Vs superficial velocity (m/s)
W mass flow rate (kg/s)
We Weber number
z axial coordinate (m)
ı film thickness (m)
� density (kg/m3)
� viscosity (kg/m s)
�w shear stress (N/m2)

Subscripts
c core
d drop
f liquid film
g gas
l liquid
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ow. Their model seems to perform reasonable but did not provide
correlation to estimate the fraction of water flowing on the wall;
ctually they used their experimental data to include this term to
he model. Therefore, except for the cases that experimental data
re available, it is not possible to implement this model accurately.

In this study at the first step it is tried to use some correla-
ions for film flow rate, core and film friction factor in the model of
iswanathan to get better results. In our previous work [8], artificial
eural networks were applied to predict pressure drop in venturi
crubbers. In the present work different types of venturi scrubbers
ave been used for training data set and the inputs of the ANNs are

ncreased. Also, genetic algorithm is used to optimize the param-
ters of the ANNs to improve the results. Taheri and Mohebbi [9]
sed the same procedure to predict collection efficiency in venturi
crubbers.

. Mathematical modeling

As mentioned before the model proposed by Viswanathan et al.
1] is based on an annular two-phase flow. This is a pattern that is
escribed as a flow of gas including liquid drops in the core, and a
ow of liquid film on the wall of the equipment.

Fig. 1 defines the control volume and related variables for a dif-
erential length of the venturi scrubber. A force balance on this
lement may be written as
(PA) + WgdVg + WddVd + Wf dVf + d(APTP) = 0 (1)

he second, third and fourth terms are considered momentum
hange of the gas, drops and liquid film, respectively. PTP is two-
hase frictional pressure drop which is obtained from homogenous
Fig. 1. Force balance on a differential element.

pressure gradient and two-phase friction factor. It is obvious that
for the regions before liquid injection point, because there is no liq-
uid droplet or film, the third and fourth terms will be omitted and
the fifth term will be replaced by d(As�w), in order to include dry
frictional pressure drop.

To calculate pressure drop, Eq. (1) and an equation for droplet
velocity should be solved simultaneously. Droplet velocity can be
determined from a force balance for droplet as Boll [5] obtained:

dVd

dt
= 3

4
�g

�d

(Vg − Vd)

D2
d

CDN (2)

CDN is modified drag coefficient defined as

CDN = RedCD (3)

Boll obtained drag coefficient, CD, from standard curve. In this work
it is observed that using the modified drag coefficient proposed by
Talaie et al. [10] makes prediction of pressure drop significantly bet-
ter, especially in the throat part of venturi scrubber. This coefficient
is as follows:

CDN = 18.65Re0.16
d (4)

To solve Eq. (1), liquid film flow rate, core and film friction fac-
tor are required. Viswanathan et al. [1] determined the value of
film flow rate from the experimental data. The correlations were
used for defining core and film friction factor were not specified in
Viswanathan’s work. In this work to calculate pressure drop from
Eq. (1), the following two correlations were applied to obtain the
fraction of water flowing on the wall:

(1) Viswanathan et al.’s correlation [11]:

Qf

L
= 89.379(

L
G × 1000 × H

Do

)1.007
V0.888

gth

(5)

(2) Griffith and Wallis’ correlation [12]:

Qf

L
= 1 Vsl ≤ 0.0304 m/s

Qf

L
= 0.0042V−1.5

sl
0.0304 < Vsl < 0.912 m/s

Qf

L
= 0.005 Vsl ≥ 0.912 m/s

(6)
As can be seen in spite of the correlation of Griffith and Wallis that is
used in both venturi scrubbers with rectangular and circular cross-
sections, Viswanathan’s correlation is just used in rectangular one.

Aziz et al. [13] established a method for defining core and film
friction factor in annular two-phase flow. In this method the core
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Fig. 3. The comparison of modeling results of this work with the experimental data
reported by Viswanathan et al. [1] for L/G = 0.00094 m3/m3.

Fig. 4. The comparison of modeling results of this work with the experimental data
reported by Viswanathan et al. [1] for L/G = 0.0012 m3/m3.
S. Nasseh et al. / Chemical Engi

riction factor is calculated from following equations:

c = (0.0014 + 0.125Re−0.32
c )

(
1 + 300ı

DH

)
(7)

c = 4(G + Qd)

�(DH − 2ı)2
(8)

here ı is the liquid film thickness which is calculated from Ishii
nd Grolmes [14] correlations by trial and error method.

Also liquid film friction factor is obtained from the following
orrelations:

ff = 24
Ref

Ref ≤ 2100

ff = 0.0913

Re0.263
f

Ref > 2100
(9)

n order to increase the accuracy of the model, the elevation term
f pressure drop is added:

dP

dz

)
ele

= g
(

L

L + G
�l +

(
1 − L

L + G

)
�g

)
(10)

n the model described by Viswanathan et al. [1], the correlation of
ukiyama and Tanasawa [15] was used for calculating liquid droplet
iameter that can be used just in Pease–Anthony venturi scrubbers.
or the wetted wall venturi scrubbers the Azzopardi’s correlation
16] can be used:

Dd

DHth
= 1.91

Re0.1
g

We0.6

(
�g

�l

)0.6
+ 0.4

ṁd

�lVgth
(11)

ccording to these modifications, Eqs. (1) and (2) were solved
umerically and pressure drop was obtained for two different ven-
uri scrubbers and compared with experimental data.

. Results of mathematical model

In Figs. 2–6 the pressure drop along venturi scrubber obtained
ith the proposed model are compared with the experimental data

btained by Viswanathan et al. [1] from a pilot Pease–Anthony
enturi scrubber with a rectangular cross-section for five different
iquid to gas flow rate ratios and three throat gas velocities. The cor-
elation of Nukiyama and Tanasawa [15] for droplet diameter and
iswanathan’s correlation for liquid film flow rate were used in the

odel.
We found that for calculating pressure drop along venturi scrub-

er for low values of the liquid to gas flow rate ratio, the correlations
iven by Griffith and Wallis for liquid film flow rate and Azzopardi
or droplet diameter give a better result, which is shown in Fig. 7.

ig. 2. The comparison of modeling results of this work with the experimental data
eported by Viswanathan et al. [1] for L/G = 0.0004 m3/m3.

Fig. 5. The comparison of modeling results of this work with the experimental data
reported by Viswanathan et al. [1] for L/G = 0.00148 m3/m3.

Fig. 6. The comparison of modeling results of this work with the experimental data
reported by Viswanathan et al. [1] for L/G = 0.00187 m3/m3.
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Fig. 7. The comparison of modeling results of this work with the experimental data
reported by Viswanathan et al. [1] for L/G = 0.0004 m3/m3 using the film flow rate of
Griffith and Wallis [12] and the droplet diameter of Azzopardi [16].
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ig. 8. The comparison of modeling results of this work with the experimental data
eported by Goncalves et al. [17] for Vgth = 50 m/s.

The experimental data reported by Goncalves et al. [17] for a
mall, circular, wetted wall venturi scrubber were used to test the
alidity of the proposed model. The correlations of Azzopardi for
roplet diameter and Griffith and Wallis for liquid film flow rate
ere used. The comparison between the results of the model and
oncalves’ experimental data are shown in Figs. 8–10 for three dif-

erent throat gas velocities. Figs. 2–10 show that in most of the cases
he results obtained with Viswanathan’s model as modified in this
ork are in good agreement with experimental data obtained in

he conditions described above. As can be seen, the agreement is
etter for lower throat gas velocities.
This model like other mathematical models has limitations and
s not suitable for all physical conditions. So in the next step, arti-
cial neural networks were applied to predict pressure drop in
enturi scrubbers as a more general model.

ig. 9. The comparison of modeling results of this work with the experimental data
eported by Goncalves et al. [17] for Vgth = 70 m/s.
Fig. 10. The comparison of modeling results of this work with the experimental data
reported by Goncalves et al. [17] for Vgth = 90 m/s.

4. Artificial neural networks

Artificial neural networks that are mathematical techniques to
deal with different types of problems are the networks of inter-
connected processing elements or neurons. ANNs can be trained to
learn the relationship between two sets of input and output data.
Multilayer perceptrons (MLPs), the best known type of neural net-
works, consist of input, hidden and output layers. The number of
independent parameters affecting the outputs specifies the number
of neurons in the input layer. The number of neurons in the hid-
den layer has been determined by trial and error or other methods
during the training process [18].

Neural networks are trained by learning algorithms. The back
propagation algorithm is the most commonly adopted MLP learning
algorithm. Each neuron in hidden or output layers sum up its input
signals after weighting them with the strengths of the respective
connections from the previous layer and calculates its output signal
as a function of the sum. The outputs of neurons in output layer are
compared with desired values to compute the error. According to
this error, weights are updated and this procedure is continued to
reach an acceptable error [20]. Well-trained neural network will be
able to give accurate outputs corresponding to new inputs.

4.1. Methodology

Azzopardi and Govan [6] identified three main parameters
affecting pressure drop in venturi scrubbers; gas velocity in the
throat (Vgth), liquid to gas flow rate ratio (L/G), and distance along
the venturi scrubber (z). In our previous work [8], these parameters
were the inputs of networks. In this study, two other inputs, throat
hydraulic diameter (DHth) and throat length (Lth), were added to
increase the efficiency of the networks.

Two neural networks were designed to estimate the wet pres-
sure drop and the dry pressure drop in venturi scrubbers. The
experimental data from seven different venturi scrubbers, includ-
ing a pilot-scale rectangular Pease–Anthony venturi scrubber [1],
a pilot-scale circular venturi scrubber with wetted wall irrigation
[19], two pilot-scale ejector venturi scrubbers with different throat
diameters [21], two small circular venturi scrubbers with jet and
wetted wall approach for introducing the liquid [17], and a pilot-
scale circular Pease–Anthony venturi scrubber [22], were used to
train and test the networks. The first network with five inputs: Vgth,
L/G, z, DHth and Lth, used the experimental data from all seven ven-
turi scrubbers to predict the wet pressure drop. The second network

evaluates the dry pressure drop by including four inputs Vgth, z, DHth
and Lth and used the experimental data from five venturi scrubbers.
Pressure drop is the output of both networks. The range of inputs
and outputs of these two networks is given in Tables 1 and 2.
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Table 1
The range of experimental data used for training network No. 1.

Venturi type Vgth (m/s) L/G × 103 (m3/m3) z (m) DHth (m) Lth (m) �P (KPa) Reference

Rectangular 45.7, 61.0, 76.2 0.40, 1.23, 1.87 0–2 0.101 0.267 0.04–7.82 [1]

Circular 88.7 0.61, 0.76, 0.88, 1.01 0–1.415 0.16 0.206 0.65–8.18 [19]
79.1, 99.5, 110 0.2–1.0 1.415 0.16 0.206 1.75–6.57

Circular 8–24 0–12.75 0.75 0.15 0.1 0–0.66 [21]
11, 27 3.573, 7.145, 10.432 0–0.75 0.15 0.1 0.01–0.61

Circular 39 2.267, 4.534, 6.620 0–0.75 0.1 0.05 0.1–1.63 [21]

Circular 50, 70, 90 0.5–2 0.109 0.019 0.015 0.53–7.23 [17]

Circular 50 0.5–2 0.109 0.019 0.015 0.55–2.66 [17]

Circular 70 1.1, 1.65, 2.2, 2.75 0–1.5 0.07 0.14 1.84–11.93 [22]
50, 70, 100 0.54–2.74 1.39 0.07 0.14 0.96–18.87 [22]

Table 2
The range of experimental data used for training network No. 2.

Venturi type Vgth (m/s) z (m) DHth (m) Lth (m) �P (KPa) Reference

Rectangular 45.7, 61, 76.2 0–2 0.101 0.267 0.4–3.26 [1]
C 0.1
C 0.1
C 0.0
C 0.0
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Figs. 11 and 12 show the average fitness in each generation for two
networks.

Table 4 gives the mean square error (MSE), mean absolute error
(MAE), minimum and maximum absolute error, and the R-squared
ircular 80.3, 94.5, 99.5 0–1.415
ircular 8.303–23.514 0.732
ircular 50, 70, 90 0.109
ircular 50, 70, 100 1.39

The networks were multilayer perceptron (MLP) type and a back-
ropagation algorithm was applied for training them. In these two
etworks, just one hidden layer is considered with 5 and 6 neu-
ons, respectively. These values were determined by trial and error
ased on the mean square error of the outputs of the testing pro-
ess. Table 3 gives the results of training and testing processes for
wo networks based on the mean square error and the R-squared
R2) between network outputs and the experimental data. As can be
een from Table 3, the R2 values are close to unity, confirming that
eural networks can be used to predict the pressure drop in ven-
uri scrubbers. But the MSE values are still not acceptable and can
e decreased using an optimization method, so genetic algorithm

s applied for this purpose.
In the next section, genetic algorithm is described briefly and

sed for improving the performance of two networks.

. Genetic algorithm

A genetic algorithm (GA) is an optimization algorithm based on
volution principles. GA can be a learning algorithm for training
LPs, and in this way the weights of the connections are considered

s genes in a chromosome. In this study, the genes in a chromosome
re the learning rate, momentum rate and the number of neurons
n the hidden layer. The goodness or fitness of a chromosome is
elated inversely to the mean square error of the MLP outputs. In
ther words, a chromosome that trains the MLP better has a higher
tness number.

The algorithm starts with a population of chromosomes pro-

uced at random and then genetic operators act on them to create a
ew and fitter population. These operators commonly are selection,
rossover and mutation operators. The selection operator chooses
hromosomes with higher fitness numbers; the crossover opera-
or selects two chromosomes at random, cuts them at a random

able 3
he results of training and testing of two networks.

Training process Testing process

R-squared MSE R-squared MSE

etwork 1 0.9940 0.1091 0.9826 3.1693
etwork 2 0.9971 0.0215 0.9952 0.0364
6 0.206 0–6.56 [19]
5 0.1 0.03–0.28 [21]
19 0.015 0.25–0.82 [17]
7 0.14 0.22–1.11 [22]

position and exchanges the parts following the cut to create two
new chromosomes. The mutation operator changes the genes of a
chromosome according to a low probability to create a new chro-
mosome. In this way, a fitter population of chromosomes is created.
This procedure is repeated to reach a population of chromosomes
with an acceptable fitness number [23].

According to this approach, two neural networks were created
and optimized to predict wet and dry pressure drop in venturi
scrubbers, we used NeuroSolution software [24] for this purpose;
this is a software that is specialized for optimizing the param-
eters of ANN by using GA. 80% of data were used for training
and cross-validation, and the remainders were used for testing
the networks. Many tests were performed with different opera-
tors, population and generation sizes based on momentum and
Levenberg–Marquardt methods for updating the weights, and
the best networks were chosen. Using the Levenberg–Marquardt
method, Roulette Wheel selection operator and a two-point
crossover operator gave the best results for training two net-
works. Both networks, with one hidden layer and 5 neurons in
each layer, showed the best agreement with the experimental data.
Fig. 11. Average fitness in each generation for network 1.
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Fig. 12. Average fitness in each generation for network 2.

Table 4
The results of testing the networks.

Network 1 Network 2

MSE 0.1529 0.0087
MAE 0.2780 0.0757
Min Abs Error 0.0035 0.0186
Max Abs Error 1.5064 0.1865
R-squared 0.9912 0.9987
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Fig. 15. The effect of distance along venturi on the total pressure drop in the venturi
scrubber of Viswanathan et al. [1] (ANN No. 1).
ig. 13. The effect of liquid to gas flow rate ratio on the total pressure drop in the
enturi scrubber of Viswanathan et al. [1] (ANN No. 1).

etween the outputs of the networks and the experimental data
or the testing process. A comparison of Tables 3 and 4 shows that
A makes a great improvement in the performance of the neural

etworks.

The effect of the main parameters on pressure drop in ven-
uri scrubbers predicted by the GA–ANNs model is illustrated by
igs. 13–15, which also represent the accuracy of the model.

ig. 14. The effect of throat gas velocity on the total pressure drop in the venturi
crubber of Gamisans et al. [21] (ANN No. 1).
Fig. 16. The comparison of results of different models with the experimental data
reported by Viswanathan et al. [1].

6. Overall results and discussions

In Fig. 16, Viswanathan’s model as modified here, and the mod-
els described by Calvert [2], Yung et al. [3], Leith et al. [4] and Boll
[5] for predicting pressure drop in venturi scrubbers are compared
with Viswanathan’s experimental data [1]. Figs. 17–19 illustrate
the comparison with Goncalves’ experimental data [17]. In order
to apply Boll and Yung’s models for venturi scrubbers with a film
injection system, the correlation of Azzopardi [16] was used to eval-
uate droplet diameter instead of using Nukiyama and Tanasawa’s
equation [15].

Figs. 16–19 indicate an acceptable agreement between the

results of the model described here and the experimental data.
The model proposed by Calvert overestimates pressure drop signif-
icantly, probably due to its reliance on a large number of simplifying
assumptions. The length of throat in Goncalves’ venturi scrubber is

Fig. 17. The comparison of results of different models with the experimental data
reported by Goncalves et al. [17] for Vgth = 50 m/s.
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Fig. 18. The comparison of results of different models with the experimental data
reported by Goncalves et al. [17] for Vgth = 70 m/s.
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ig. 19. The comparison of results of different models with the experimental data
eported by Goncalves et al. [17] for Vgth = 90 m/s.

ess than that of Viswanathan’s, so the droplets have less time to
each the velocity of gas at the end of the throat, and therefore the
eviation of Calvert’s model from the experimental data is greater
or this venturi compared to Viswanathan’s.

In spite of their simplifications, the accuracy of the prediction
ade by the models described by Yung and Leith is surprising.

n these models, complete atomization of liquid was considered.
ung’s model ignored the wall–gas stress, and the pressure drop
ue to the momentum change of the gas along the venturi, which
ompensates for the overestimation due to the assumption of com-
lete atomization of liquid. Consideration of the pressure recovery
ue to the deceleration of droplets is the only correction made in
he model described by Leith compared to Yung’s model. Hence, in

ost of the cases, Leith’s model predictions are lower than Yung’s
odel. In the model described by Boll, the complete atomization of

iquid was assumed, and wall–gas friction and pressure drop due

o the momentum change of the gas were taken into account. As
result, Boll’s model overestimates the pressure drop. This over-

stimation is considerably high in the case of Goncalves’ venturi
ecause pressure loss due to friction is quite important in small
enturi scrubbers.

able 5
he comparison of two methods of training of the networks and two methods of updating

Momentum

N R2

rial and error Network 1 5 0.8536
Network 2 4 0.7059

enetic algorithm Network 1 4 0.9240
Network 2 5 0.9939

: the number of neurons in hidden layer.
Fig. 20. The comparison of different models with the testing results of ANN No. 1
based on experimental data of Allen and van Santen circular venturi scrubber [19].

In Goncalves’ venturi the liquid was introduced as a film and
the fraction of atomized liquid was low, consequently the complete
atomization of liquid that is assumed in the models described by
Calvert, Yung, Leith and Boll predicts a greater pressure drop in this
venturi in contrast to Viswanathan’s venturi scrubber. But, as can
be observed in Figs. 17–19, the deviation of these models decreases
when the gas throat velocity increases, due to the increased fraction
of atomized liquid.

Comparing Fig. 16 with Figs. 17–19 indicates that, except for
Vgth = 90 m/s, the modeling described here gives more accurate pre-
dictions for Goncalves’ venturi scrubber. This can be explained by
the fact that the flow of gas and liquid in this venturi scrubber, which
is used film approach, is more similar to an annular two-phase flow
pattern. In this pattern of flow, droplets are created only due to shear
stress between the gas and the liquid film layer on the wall. Conse-
quently, this modeling, which is based on annular two-phase flow
pattern, gives more satisfactory predictions for Goncalves’ venturi
scrubber.

Fig. 20 shows a comparison between the results of ANN No. 1
and pressure drop calculated by the models described by Yung et
al. [3], Calvert [2], Boll [5], Hesketh [25] and Azzopardi et al. [7] for
the Allen and van Santen circular venturi scrubber [19]. This figure
indicates that the artificial neural network predicts pressure drop
more accurately than other models.

At the first use of ANNs, the optimum number of neurons in
the hidden layer has to be found by trial and error. This method
is extremely time-consuming and is not sufficiently accurate, so
GA is used to optimize the number of neurons in the hidden
layer. Many tests were performed for training the networks on the
basis of two methods of updating the weights; momentum and
Levenberg–Marquardt. For the momentum method, momentum
rate and learning rate were optimized in addition to the number
of neurons in a hidden layer. The results of these tests and those of

the trial and error method are given in Table 5 based on the testing
process. Table 5 shows that the GA method performs considerably
better than the trial and error method. GA creates simpler networks
with fewer neurons in the hidden layer, and for networks of equal
size it has a better R-squared (close to unity). Also, the time taken

the weights.

Levenberg–Marquardt

MSE N R2 MSE

4.6605 5 0.9826 3.1693
1.8146 6 0.9952 0.0364

0.9791 5 0.9912 0.1927
0.0748 5 0.9987 0.0255
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ig. 21. The comparison of three models proposed in this work based on the exper-
mental data reported by Viswanathan et al. [1].

o build the neural networks by using GA is less than trial and error
ethod.
Comparing two methods of updating the weights indicates

hat the Levenberg–Marquardt method usually gives better results
han the momentum method. This is not surprising, because the
evenberg–Marquardt is a quadratic method for updating the
eights and performs better than linear methods. Also, using a

uadratic method converges the outputs faster.
A comparison, based on mean square error, of the results

btained with the three models proposed in this work and the
xperimental data reported by Viswanathan et al. [1] is shown in
ig. 21. This figure shows that the artificial neural networks opti-
ized by genetic algorithm (GA–ANNs) are in the closest agreement
ith the experimental data. In order to use the created neural net-
orks for predicting pressure drop in a venturi scrubber, the range

f inputs should be covered by the range of training data set.

. Conclusions

Studying the available mathematical models indicates that each
f them performs reasonably in a special range of conditions. So,
n order to use these models, their limitations should be consid-
red. In this work, the experimental data of venturi scrubbers with
ifferent types, shapes, sizes and operating conditions, with three
iquid injection systems, were used for training two neural net-
orks, and the results converged well. So neural networks have

ewer restrictions. Finally, according to good predictions a neural
etwork optimized by GA is a reliable tool for predicting pressure
rop in venturi scrubbers.

[
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